Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 5-Hydroxy-4-methyl-4-azatricyclo-[5.2.2.0<sup>2,6</sup>]undec-8-en-3-one

### Ray J. Butcher,<sup>a</sup> Jerry P. Jasinski,<sup>b</sup>\* Ellis Benjamin,<sup>c</sup> Yousef M. Hijji<sup>d</sup> and Earl Benjamin<sup>c</sup>

<sup>a</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, <sup>b</sup>Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, <sup>c</sup>Department of Chemistry, Arkansas State University, State University, AR 72467, USA, and <sup>d</sup>Department of Chemistry, Morgan State University, Baltimore, MD 21251, USA Correspondence e-mail: jjasinski@keene.edu

conceptinence c-mail. Jjasinski@kcenc.cuu

Received 23 October 2007; accepted 27 October 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.084; data-to-parameter ratio = 24.8.

Two independent molecules (*A* and *B*) comprise the asymmetric unit in the crystal structure of the title compound,  $C_{11}H_{15}NO_2$ . The cyclohexane ring adopts a boat configuration, as does the fused cyclohexene ring that bridges the cyclohexane ring. The crystal packing is stabilized by intermolecular O-H···O hydrogen bonding between the hydroxyl H atom of molecule *A* and the ketone O atom of molecule *B* and *vice versa*. These link the molecules into chains running diagonally along the *bc* face of the unit cell.

#### **Related literature**

For related structures, see: Pollack *et al.* (1997); Monkman *et al.* (2002). For related literature, see: Birney *et al.* (2002); Stephan *et al.* (1988); Cremer & Pople (1975).

OH



#### Experimental

Crystal data  $C_{11}H_{15}NO_2$  $M_r = 193.24$ 

Triclinic,  $P\overline{1}$ a = 9.0426 (10) Å

| b = 9.409 (3) Å                  | Z = 4                             |
|----------------------------------|-----------------------------------|
| c = 12.260 (3) Å                 | Mo $K\alpha$ radiation            |
| $\alpha = 108.89 \ (2)^{\circ}$  | $\mu = 0.09 \text{ mm}^{-1}$      |
| $\beta = 91.454 \ (13)^{\circ}$  | T = 203  K                        |
| $\gamma = 91.817 \ (16)^{\circ}$ | $0.55 \times 0.46 \times 0.36$ mm |
| $V = 985.8 (4) \text{ Å}^3$      |                                   |

### Data collection

Oxford Diffraction Gemini R CCD<br/>diffractometer6368 independent reflections<br/>2308 reflections with  $I > 2\sigma(I)$ Absorption correction: none<br/>12514 measured reflections $R_{int} = 0.048$ 

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.044 & 257 \text{ parameters} \\ wR(F^2) = 0.084 & H\text{-atom parameters constrained} \\ S = 0.73 & \Delta\rho_{\max} = 0.22 \text{ e } \text{\AA}^{-3} \\ 6368 \text{ reflections} & \Delta\rho_{\min} = -0.19 \text{ e } \text{\AA}^{-3} \end{array}$ 

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $\begin{array}{c} O2A - H2AA \cdots O1B^{i} \\ O2B - H2BA \cdots O1A \end{array}$ | 0.83 | 1.90                    | 2.7322 (16)  | 178                                  |
|                                                                                   | 0.83 | 1.86                    | 2.6868 (16)  | 179                                  |

Symmetry code: (i) x, y - 1, z - 1.

Data collection: *CrysAlisPro* (Oxford Diffraction, 2007); cell refinement: *CrysAlisPro*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2206).

#### References

- Birney, D., Lim, T. K., Koh, J. H. P., Pool, B. R. & White, J. M. (2002). J. Am. Chem. Soc. 124, 5091–5099.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Monkman, A. P., Palsson, L., Higgins, R. W. T., Wang, C., Bryce, M. R., Batsanov, A. S. & Howard, J. A. K. (2002). J. Am. Chem. Soc. 124, 6049– 6055.
- Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pollack, S. K., Hijji, Y. M. & Kgobane, B. (1997). *Macromolecules*, **30**, 6709–6711.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stephan, D., Gorgues, A. & Le Coq, A. (1988). Tetrahedron Lett. 29, 1025– 1028.

Acta Cryst. (2007). E63, o4565 [doi:10.1107/S1600536807053779]

### 5-Hydroxy-4-methyl-4-azatricyclo[5.2.2.0<sup>2,6</sup>]undec-8-en-3-one

### R. J. Butcher, J. P. Jasinski, E. Benjamin, Y. M. Hijji and E. Benjamin

### Comment

5-Hydroxy-4-methyl-4-aza-tricyclo[5.2.2.0,2,6]undecan-3-one was synthesized to determine whether the cyclic imide functionality can be reduced from 4-methyl-4-aza-tricyclo[5.2.2.0,2,6]undec-8-ene-3,5-dione (Birney *et al.*, 2002) to a functionalized pyrrole using diisobutylaluminium hydride (DIBAL-H). This reaction was carried out to determine if a stepwise reduction of a cyclic imide into a pyrrole could use DIBAL-H instead of a more complex synthetic process (Stephan *et al.*, 1988). These pyrrole derivatives are used in a number of materials, especially intramolecularly hydrogen-bonded conjugated polymers (Pollack *et al.*, 1997). They are also used in the protonation and subsequent intramolecular hydrogen bonding as a method to control chain structure and to tune luminescence in heteroatomic conjugated polymers (Monkman *et al.*, 2002). A new pyrrole derivative (I),  $C_{11}H_{15}NO_2$ , was prepared and its crystal structure is reported herein.

Compound (I) crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The angle between the mean planes of cyclohexane and fused 4-methyl-4-aza-tricyclo-3-one group is 23.5 (4) ° [A] and 25.1 (2)° [B]. The cyclohexane ring is in a boat configuration with puckering parameters Q,  $\theta$  and  $\varphi$  of 0.8771 (15) Å, 91.61 (10)° and 63.05 (10)°, respectively for C2A—C7A in A, and 0.8784 (16) Å, 90.79 (10)° and 61.45 (10)°, respectively for C2B—C7B in B (Cremer & Pople, 1975). The bridged, 6-membered [5.2.2.0,2,6] group is also in a boat configuration with puckering parameters Q,  $\theta$  and  $\varphi$  of 0.7885 (16) Å, 90.14 (12)° and 358.87 (12)° for C3A–C6A,C10A,C11A in A; 0.7959 (16) Å, 90.24 (12)° and 359.24 (12)° for C3B—C6B,C10B,C11B in B. The crystal packing is stabilized by intermolecular O—H···O hydrogen bonding (Table 1) between the hydroxyl hydrogen atom of molecule A [O2A–H2AA] to the ketone oxygen atom of molecule B [O1B] and *vice versa*, which link the molecules into chains diagonal along the *bc* face of the unit cell (Fig. 2).

### **Experimental**

4-Methyl-4-aza-tricyclo[5.2.2.0,2,6]undec-8-ene-3,5-dione (0.50 g), produced from the Diels–Alder synthesis of *N*-methyl maleimide and 1,3 cyclohexadiene, was dissolved in THF (30 ml) under nitrogen in an ice bath. DIBAL-H, (5.2 ml) was added dropwise for 5 min and allowed to stir for 3 h. The reaction was then stopped. The product was extracted using ethyl acetate and washed 3x with sat. NaHCO<sub>3</sub>. This was dried over MgSO<sub>4</sub> to yield 0.29 g of product. Crystals were obtained from the slow evaporation of methanol solution of (I).

### Refinement

The hydroxyl hydrogen atoms (H2AA & H2BA) were located in a difference Fourier map and along with all other H atoms were placed in their calculated positions and were then refined using the riding model approximation with O—H = 0.83 Å and C—H = 0.94 - 0.99 Å, and with  $U_{iso}(H) = 1.2 - 1.5U_{eq}(C, O)$ .

Figures



Fig. 1. Molecular structure of (I), showing atom labeling for the two independent molecules (A & B) and 50% probability displacement ellipsoids.



Fig. 2. Packing diagram of  $C_{11}H_{15}NO_2$  viewed down the *a* axis. Dashed lines indicate O2A–H2AA···O1B and O2B–H2BA···O1A hydrogen bonds.

## 5-Hydroxy-4-methyl-4-azatricyclo[5.2.2.0<sup>2,6</sup>]undec-8-en-3-one

| Crystal data                                    |                                                 |
|-------------------------------------------------|-------------------------------------------------|
| C <sub>11</sub> H <sub>15</sub> NO <sub>2</sub> | Z = 4                                           |
| $M_r = 193.24$                                  | $F_{000} = 416$                                 |
| Triclinic, $P\overline{1}$                      | $D_{\rm x} = 1.302 {\rm Mg m}^{-3}$             |
| Hall symbol: -P 1                               | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 9.0426 (10)  Å                              | Cell parameters from 2564 reflections           |
| b = 9.409 (3)  Å                                | $\theta = 4.8 - 32.4^{\circ}$                   |
| c = 12.260 (3)  Å                               | $\mu = 0.09 \text{ mm}^{-1}$                    |
| $\alpha = 108.89 \ (2)^{\circ}$                 | T = 203  K                                      |
| $\beta = 91.454 \ (13)^{\circ}$                 | Chunk, colourless                               |
| $\gamma = 91.817 \ (16)^{\circ}$                | $0.55 \times 0.46 \times 0.36 \text{ mm}$       |
| $V = 985.8 (4) \text{ Å}^3$                     |                                                 |

### Data collection

| Oxford Diffraction Gemini R CCD diffractometer       | 6368 independent reflections           |
|------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube             | 2308 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                              | $R_{\rm int} = 0.048$                  |
| Detector resolution: 10.5081 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 32.5^{\circ}$   |
| T = 203  K                                           | $\theta_{\min} = 4.8^{\circ}$          |
| $\varphi$ and $\omega$ scans                         | $h = -13 \rightarrow 12$               |

| Absorption correction: none | $k = -13 \rightarrow 13$ |
|-----------------------------|--------------------------|
| 12514 measured reflections  | $l = -18 \rightarrow 18$ |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                      |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                        | H-atom parameters constrained                                             |
| $wR(F^2) = 0.084$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0322P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.73                                        | $(\Delta/\sigma)_{\rm max} = 0.007$                                       |
| 6368 reflections                                       | $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$                     |
| 257 parameters                                         | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$                |
| Primary atom site location: structure-invariant direct | Futing tion competing and                                                 |

Primary atom site location: structure-invariant direct methods Extinction correction: none

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|---------------|---------------------------|
| O1A  | 0.16069 (9)  | 0.52439 (10) | 0.07775 (8)   | 0.0314 (2)                |
| O2A  | 0.36646 (9)  | 0.25659 (10) | -0.24154 (8)  | 0.0366 (3)                |
| H2AA | 0.3548       | 0.1782       | -0.2974       | 0.055*                    |
| O1B  | 0.33481 (10) | 1.00085 (10) | 0.57185 (8)   | 0.0333 (2)                |
| O2B  | 0.12572 (10) | 0.80442 (10) | 0.22133 (9)   | 0.0387 (3)                |
| H2BA | 0.1357       | 0.7174       | 0.1777        | 0.058*                    |
| N1A  | 0.20075 (11) | 0.34330 (12) | -0.09313 (9)  | 0.0276 (3)                |
| N1B  | 0.28780 (11) | 0.85683 (12) | 0.38432 (10)  | 0.0284 (3)                |
| C1A  | 0.18021 (13) | 0.48518 (14) | -0.02746 (12) | 0.0247 (3)                |
| C2A  | 0.18082 (14) | 0.58569 (14) | -0.10129 (11) | 0.0267 (3)                |
| H2AB | 0.0796       | 0.6204       | -0.1068       | 0.032*                    |
| C3A  | 0.28881 (15) | 0.72297 (14) | -0.05591 (12) | 0.0308 (3)                |
| НЗАА | 0.2615       | 0.7893       | 0.0210        | 0.037*                    |
| C4A  | 0.28725 (17) | 0.80663 (16) | -0.14502 (13) | 0.0406 (4)                |
| H4AA | 0.1869       | 0.8383       | -0.1546       | 0.049*                    |
| H4AB | 0.3532       | 0.8967       | -0.1177       | 0.049*                    |

| C5A  | 0.33856 (17) | 0.70269 (16) | -0.26115 (13) | 0.0411 (4) |
|------|--------------|--------------|---------------|------------|
| H5AA | 0.4280       | 0.7467       | -0.2831       | 0.049*     |
| H5AB | 0.2612       | 0.6912       | -0.3212       | 0.049*     |
| C6A  | 0.37122 (15) | 0.54791 (15) | -0.25038 (12) | 0.0333 (4) |
| H6AA | 0.4094       | 0.4802       | -0.3230       | 0.040*     |
| C7A  | 0.22374 (14) | 0.48369 (14) | -0.22132 (11) | 0.0268 (3) |
| H7AA | 0.1461       | 0.4857       | -0.2792       | 0.032*     |
| C8A  | 0.22836 (14) | 0.32299 (14) | -0.21366 (12) | 0.0282 (3) |
| H8AA | 0.1485       | 0.2580       | -0.2639       | 0.034*     |
| C9A  | 0.18835 (15) | 0.21534 (15) | -0.05272 (13) | 0.0356 (4) |
| Н9АА | 0.1873       | 0.2500       | 0.0309        | 0.053*     |
| H9AB | 0.2721       | 0.1525       | -0.0777       | 0.053*     |
| Н9АС | 0.0973       | 0.1577       | -0.0842       | 0.053*     |
| C10A | 0.48098 (15) | 0.57138 (15) | -0.15213 (14) | 0.0351 (4) |
| H10A | 0.5724       | 0.5249       | -0.1612       | 0.042*     |
| C11A | 0.43988 (15) | 0.66246 (15) | -0.05131 (13) | 0.0343 (4) |
| H11A | 0.4996       | 0.6869       | 0.0166        | 0.041*     |
| C1B  | 0.31536 (14) | 0.98754 (14) | 0.46820 (12)  | 0.0257 (3) |
| C2B  | 0.32041 (15) | 1.11280 (14) | 0.41787 (11)  | 0.0282 (3) |
| H2BB | 0.4225       | 1.1572       | 0.4259        | 0.034*     |
| C3B  | 0.21215 (15) | 1.23657 (14) | 0.47498 (12)  | 0.0319 (4) |
| H3BA | 0.2370       | 1.2838       | 0.5583        | 0.038*     |
| C4B  | 0.22084 (17) | 1.35259 (16) | 0.41135 (13)  | 0.0416 (4) |
| H4BA | 0.3224       | 1.3945       | 0.4170        | 0.050*     |
| H4BB | 0.1559       | 1.4351       | 0.4469        | 0.050*     |
| C5B  | 0.17286 (18) | 1.27657 (16) | 0.28377 (13)  | 0.0438 (4) |
| H5BA | 0.2532       | 1.2868       | 0.2343        | 0.053*     |
| H5BB | 0.0863       | 1.3252       | 0.2646        | 0.053*     |
| C6B  | 0.13431 (15) | 1.10831 (15) | 0.26263 (13)  | 0.0362 (4) |
| H6BA | 0.0980       | 1.0575       | 0.1821        | 0.043*     |
| C7B  | 0.27679 (14) | 1.03841 (15) | 0.28943 (12)  | 0.0299 (3) |
| H7BA | 0.3570       | 1.0593       | 0.2426        | 0.036*     |
| C8B  | 0.26488 (15) | 0.86870 (15) | 0.26949 (12)  | 0.0297 (3) |
| H8BA | 0.3442       | 0.8178       | 0.2189        | 0.036*     |
| C9B  | 0.28810 (16) | 0.71219 (15) | 0.40165 (14)  | 0.0382 (4) |
| H9BA | 0.2857       | 0.7261       | 0.4835        | 0.057*     |
| H9BB | 0.3771       | 0.6615       | 0.3707        | 0.057*     |
| H9BC | 0.2017       | 0.6518       | 0.3624        | 0.057*     |
| C10B | 0.01956 (16) | 1.09860 (15) | 0.34593 (15)  | 0.0379 (4) |
| H10B | -0.0733      | 1.0489       | 0.3223        | 0.045*     |
| C11B | 0.05950 (16) | 1.16562 (15) | 0.45542 (14)  | 0.0368 (4) |
| H11B | -0.0030      | 1.1684       | 0.5161        | 0.044*     |
|      |              |              |               |            |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| O1A | 0.0365 (6) | 0.0309 (5) | 0.0230 (6) | -0.0003 (4) | 0.0021 (5) | 0.0035 (4)  |
| O2A | 0.0326 (6) | 0.0336 (6) | 0.0340 (7) | 0.0079 (4)  | 0.0020 (5) | -0.0032 (5) |

| O1B  | 0.0431 (6)  | 0.0312 (6)  | 0.0239 (6)  | 0.0069 (4)  | -0.0006 (5) | 0.0063 (4)  |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| O2B  | 0.0352 (6)  | 0.0305 (6)  | 0.0381 (7)  | 0.0002 (4)  | -0.0047 (5) | -0.0053 (5) |
| N1A  | 0.0320 (7)  | 0.0217 (6)  | 0.0265 (7)  | 0.0021 (5)  | 0.0005 (5)  | 0.0043 (5)  |
| N1B  | 0.0332 (7)  | 0.0240 (6)  | 0.0250 (7)  | 0.0014 (5)  | 0.0023 (6)  | 0.0037 (6)  |
| C1A  | 0.0184 (7)  | 0.0268 (8)  | 0.0262 (8)  | -0.0002 (6) | -0.0007 (6) | 0.0050 (7)  |
| C2A  | 0.0236 (7)  | 0.0258 (7)  | 0.0292 (9)  | 0.0055 (6)  | 0.0002 (6)  | 0.0068 (7)  |
| C3A  | 0.0400 (9)  | 0.0239 (8)  | 0.0261 (8)  | -0.0020(7)  | 0.0042 (7)  | 0.0047 (6)  |
| C4A  | 0.0484 (10) | 0.0314 (8)  | 0.0471 (11) | 0.0024 (7)  | 0.0038 (8)  | 0.0194 (8)  |
| C5A  | 0.0447 (9)  | 0.0449 (10) | 0.0402 (10) | -0.0012 (8) | 0.0016 (8)  | 0.0233 (8)  |
| C6A  | 0.0316 (8)  | 0.0345 (8)  | 0.0304 (9)  | 0.0042 (7)  | 0.0042 (7)  | 0.0052 (7)  |
| C7A  | 0.0241 (7)  | 0.0294 (8)  | 0.0234 (8)  | 0.0021 (6)  | -0.0033 (6) | 0.0038 (6)  |
| C8A  | 0.0267 (8)  | 0.0286 (8)  | 0.0245 (8)  | 0.0006 (6)  | 0.0003 (6)  | 0.0019 (6)  |
| C9A  | 0.0397 (9)  | 0.0277 (8)  | 0.0384 (9)  | -0.0026 (6) | -0.0002 (7) | 0.0101 (7)  |
| C10A | 0.0266 (8)  | 0.0352 (8)  | 0.0457 (10) | -0.0025 (7) | 0.0038 (7)  | 0.0164 (8)  |
| C11A | 0.0304 (8)  | 0.0329 (8)  | 0.0387 (10) | -0.0094 (7) | -0.0071 (7) | 0.0123 (8)  |
| C1B  | 0.0232 (8)  | 0.0266 (8)  | 0.0260 (9)  | 0.0042 (6)  | 0.0025 (6)  | 0.0066 (7)  |
| C2B  | 0.0274 (8)  | 0.0261 (8)  | 0.0284 (9)  | -0.0022 (6) | -0.0022 (6) | 0.0057 (6)  |
| C3B  | 0.0487 (9)  | 0.0241 (8)  | 0.0227 (8)  | 0.0040 (7)  | -0.0008 (7) | 0.0074 (6)  |
| C4B  | 0.0537 (10) | 0.0295 (8)  | 0.0440 (10) | -0.0007 (7) | -0.0017 (8) | 0.0158 (8)  |
| C5B  | 0.0539 (10) | 0.0421 (10) | 0.0425 (11) | -0.0025 (8) | -0.0015 (8) | 0.0244 (8)  |
| C6B  | 0.0401 (9)  | 0.0369 (9)  | 0.0304 (9)  | -0.0030 (7) | -0.0084 (7) | 0.0103 (7)  |
| C7B  | 0.0268 (8)  | 0.0374 (8)  | 0.0253 (8)  | -0.0019 (6) | 0.0035 (6)  | 0.0102 (7)  |
| C8B  | 0.0250 (8)  | 0.0346 (8)  | 0.0249 (9)  | 0.0008 (6)  | 0.0014 (7)  | 0.0031 (7)  |
| C9B  | 0.0466 (9)  | 0.0234 (8)  | 0.0445 (10) | 0.0050 (7)  | 0.0067 (8)  | 0.0104 (7)  |
| C10B | 0.0294 (8)  | 0.0297 (8)  | 0.0555 (12) | 0.0025 (7)  | -0.0028 (8) | 0.0154 (8)  |
| C11B | 0.0376 (9)  | 0.0323 (8)  | 0.0482 (11) | 0.0119 (7)  | 0.0179 (8)  | 0.0216 (8)  |

### Geometric parameters (Å, °)

| O1A—C1A  | 1.2404 (15) | С9А—Н9АА  | 0.9700      |
|----------|-------------|-----------|-------------|
| O2A—C8A  | 1.4140 (14) | С9А—Н9АВ  | 0.9700      |
| O2A—H2AA | 0.8300      | С9А—Н9АС  | 0.9700      |
| O1B—C1B  | 1.2432 (15) | C10A—C11A | 1.3259 (19) |
| O2B—C8B  | 1.4073 (16) | C10A—H10A | 0.9400      |
| O2B—H2BA | 0.8300      | C11A—H11A | 0.9400      |
| N1A—C1A  | 1.3387 (16) | C1B—C2B   | 1.4970 (19) |
| N1A—C9A  | 1.4451 (17) | C2B—C7B   | 1.5370 (19) |
| N1A—C8A  | 1.4565 (16) | C2B—C3B   | 1.5440 (17) |
| N1B—C1B  | 1.3345 (17) | C2B—H2BB  | 0.9900      |
| N1B—C9B  | 1.4438 (17) | C3B—C11B  | 1.493 (2)   |
| N1B—C8B  | 1.4581 (17) | C3B—C4B   | 1.5347 (19) |
| C1A—C2A  | 1.5060 (19) | СЗВ—НЗВА  | 0.9900      |
| C2A—C3A  | 1.5358 (19) | C4B—C5B   | 1.539 (2)   |
| C2A—C7A  | 1.5412 (17) | C4B—H4BA  | 0.9800      |
| C2A—H2AB | 0.9900      | C4B—H4BB  | 0.9800      |
| C3A—C11A | 1.5031 (18) | C5B—C6B   | 1.546 (2)   |
| C3A—C4A  | 1.5396 (19) | C5B—H5BA  | 0.9800      |
| СЗА—НЗАА | 0.9900      | C5B—H5BB  | 0.9800      |
| C4A—C5A  | 1.5361 (19) | C6B—C10B  | 1.4954 (19) |
|          |             |           |             |

| C4A—H4AA      | 0.9800      | C6B—C7B        | 1.5404 (19) |
|---------------|-------------|----------------|-------------|
| C4A—H4AB      | 0.9800      | C6B—H6BA       | 0.9900      |
| C5A—C6A       | 1.5413 (19) | C7B—C8B        | 1.5350 (19) |
| С5А—Н5АА      | 0.9800      | С7В—Н7ВА       | 0.9900      |
| С5А—Н5АВ      | 0.9800      | C8B—H8BA       | 0.9900      |
| C6A—C10A      | 1.496 (2)   | С9В—Н9ВА       | 0.9700      |
| C6A—C7A       | 1.5436 (18) | С9В—Н9ВВ       | 0.9700      |
| С6А—Н6АА      | 0.9900      | С9В—Н9ВС       | 0.9700      |
| C7A—C8A       | 1.5468 (18) | C10B—C11B      | 1.320 (2)   |
| С7А—Н7АА      | 0.9900      | C10B—H10B      | 0.9400      |
| C8A—H8AA      | 0.9900      | C11B—H11B      | 0.9400      |
| C8A—O2A—H2AA  | 109.5       | C6A—C10A—H10A  | 122.4       |
| C8B—O2B—H2BA  | 109.5       | C10A—C11A—C3A  | 113.66 (14) |
| C1A—N1A—C9A   | 124.14 (11) | C10A—C11A—H11A | 123.2       |
| C1A—N1A—C8A   | 115.08 (11) | C3A—C11A—H11A  | 123.2       |
| C9A—N1A—C8A   | 120.68 (11) | O1B—C1B—N1B    | 124.37 (13) |
| C1B—N1B—C9B   | 123.98 (12) | O1B—C1B—C2B    | 126.00 (13) |
| C1B—N1B—C8B   | 114.83 (12) | N1B—C1B—C2B    | 109.63 (12) |
| C9B—N1B—C8B   | 121.10 (11) | C1B—C2B—C7B    | 105.14 (11) |
| O1A—C1A—N1A   | 124.04 (13) | C1B—C2B—C3B    | 112.38 (10) |
| O1A—C1A—C2A   | 126.28 (12) | C7B—C2B—C3B    | 110.17 (11) |
| N1A—C1A—C2A   | 109.67 (12) | C1B—C2B—H2BB   | 109.7       |
| C1A—C2A—C3A   | 113.55 (12) | C7B—C2B—H2BB   | 109.7       |
| C1A—C2A—C7A   | 104.81 (10) | C3B—C2B—H2BB   | 109.7       |
| C3A—C2A—C7A   | 110.95 (10) | C11B—C3B—C4B   | 108.09 (12) |
| C1A—C2A—H2AB  | 109.1       | C11B—C3B—C2B   | 107.59 (11) |
| СЗА—С2А—Н2АВ  | 109.1       | C4B—C3B—C2B    | 107.31 (11) |
| C7A—C2A—H2AB  | 109.1       | C11B—C3B—H3BA  | 111.2       |
| C11A—C3A—C2A  | 106.35 (10) | С4В—С3В—Н3ВА   | 111.2       |
| C11A—C3A—C4A  | 108.68 (11) | С2В—С3В—НЗВА   | 111.2       |
| C2A—C3A—C4A   | 107.56 (12) | C3B—C4B—C5B    | 109.51 (12) |
| С11А—С3А—НЗАА | 111.3       | C3B—C4B—H4BA   | 109.8       |
| С2А—С3А—НЗАА  | 111.3       | C5B—C4B—H4BA   | 109.8       |
| С4А—С3А—НЗАА  | 111.3       | C3B—C4B—H4BB   | 109.8       |
| C5A—C4A—C3A   | 109.68 (11) | C5B—C4B—H4BB   | 109.8       |
| С5А—С4А—Н4АА  | 109.7       | H4BA—C4B—H4BB  | 108.2       |
| СЗА—С4А—Н4АА  | 109.7       | C4B—C5B—C6B    | 109.16 (12) |
| C5A—C4A—H4AB  | 109.7       | C4B—C5B—H5BA   | 109.8       |
| СЗА—С4А—Н4АВ  | 109.7       | C6B—C5B—H5BA   | 109.8       |
| H4AA—C4A—H4AB | 108.2       | C4B—C5B—H5BB   | 109.8       |
| C4A—C5A—C6A   | 109.33 (11) | C6B—C5B—H5BB   | 109.8       |
| С4А—С5А—Н5АА  | 109.8       | H5BA—C5B—H5BB  | 108.3       |
| С6А—С5А—Н5АА  | 109.8       | C10B—C6B—C7B   | 109.17 (12) |
| C4A—C5A—H5AB  | 109.8       | C10B—C6B—C5B   | 107.80 (11) |
| С6А—С5А—Н5АВ  | 109.8       | C7B—C6B—C5B    | 106.82 (12) |
| Н5АА—С5А—Н5АВ | 108.3       | C10B—C6B—H6BA  | 111.0       |
| C10A—C6A—C5A  | 108.20 (12) | С7В—С6В—Н6ВА   | 111.0       |
| C10A—C6A—C7A  | 109.15 (12) | С5В—С6В—Н6ВА   | 111.0       |
| C5A—C6A—C7A   | 106.43 (10) | C8B—C7B—C2B    | 105.91 (11) |

| С10А—С6А—Н6АА                   | 111.0        | C8B—C7B—C6B                                | 115.58 (11)  |
|---------------------------------|--------------|--------------------------------------------|--------------|
| С5А—С6А—Н6АА                    | 111.0        | C2B—C7B—C6B                                | 108.49 (10)  |
| С7А—С6А—Н6АА                    | 111.0        | C8B—C7B—H7BA                               | 108.9        |
| C2A—C7A—C6A                     | 107.76 (11)  | С2В—С7В—Н7ВА                               | 108.9        |
| C2A—C7A—C8A                     | 106.03 (10)  | С6В—С7В—Н7ВА                               | 108.9        |
| C6A—C7A—C8A                     | 115.39 (10)  | O2B—C8B—N1B                                | 110.62 (11)  |
| С2А—С7А—Н7АА                    | 109.2        | O2B—C8B—C7B                                | 112.23 (11)  |
| С6А—С7А—Н7АА                    | 109.2        | N1B—C8B—C7B                                | 104.12 (11)  |
| С8А—С7А—Н7АА                    | 109.2        | O2B—C8B—H8BA                               | 109.9        |
| O2A—C8A—N1A                     | 109.21 (11)  | N1B—C8B—H8BA                               | 109.9        |
| O2A—C8A—C7A                     | 113.56 (10)  | С7В—С8В—Н8ВА                               | 109.9        |
| N1A—C8A—C7A                     | 103.97 (10)  | N1B—C9B—H9BA                               | 109.5        |
| О2А—С8А—Н8АА                    | 110.0        | N1B—C9B—H9BB                               | 109.5        |
| N1A—C8A—H8AA                    | 110.0        | Н9ВА—С9В—Н9ВВ                              | 109.5        |
| С7А—С8А—Н8АА                    | 110.0        | N1B—C9B—H9BC                               | 109.5        |
| N1A—C9A—H9AA                    | 109.5        | Н9ВА—С9В—Н9ВС                              | 109.5        |
| N1A—C9A—H9AB                    | 109.5        | H9BB—C9B—H9BC                              | 109.5        |
| Н9АА—С9А—Н9АВ                   | 109.5        | C11B—C10B—C6B                              | 114.46 (14)  |
| N1A—C9A—H9AC                    | 109.5        | C11B—C10B—H10B                             | 122.8        |
| Н9АА—С9А—Н9АС                   | 109.5        | C6B—C10B—H10B                              | 122.8        |
| H9AB—C9A—H9AC                   | 109.5        | C10B—C11B—C3B                              | 114.51 (13)  |
| $C_{11A}$ $C_{10A}$ $C_{6A}$    | 115 14 (12)  | C10B—C11B—H11B                             | 122.7        |
| $C_{11A}$ $C_{10A}$ $H_{10A}$   | 122.4        | C3B-C11B-H11B                              | 122.7        |
|                                 | (4.0)        | COD NID CID OID                            | 4.0.(2)      |
| $C_{A} = N_{A} = C_{A} = O_{A}$ | 0.4(2)       | $C^{\text{PD}} = N^{1}D = C^{1}D = O^{1}D$ | -4.9(2)      |
| CA = NIA = CIA = CIA            | -1/7.51(11)  | COR NUR CIR COR                            | 174.51 (11)  |
| C9A = NIA = C1A = C2A           | -1/2.1/(11)  | C9B-NIB-CIB-C2B                            | 2 10 (14)    |
| C8A—NIA— $C1A$ — $C2A$          | 4.11 (15)    | C8B-NIB-CIB-C2B                            | -2.10(14)    |
| OIA - CIA - C2A - C3A           | 55.72 (10)   | OIB - CIB - C2B - C7B                      | -1/5.46(12)  |
| NIA - CIA - C2A - C3A           | -12/./3(11)  | NIB - CIB - C2B - C7B                      | 5.11 (13)    |
| OIA - CIA - CZA - C/A           | 1/4.9/ (12)  | UIB-CIB-C2B-C3B                            | -55.60 (17)  |
| NIA - CIA - CZA - C/A           | -6.48 (14)   | NIB—CIB—C2B—C3B                            | 124.96 (12)  |
| CIA - C2A - C3A - CIIA          | 58.84 (13)   | CIB—C2B—C3B—CIIB                           | -60.52 (15)  |
| C/A—C2A—C3A—C11A                | -58.90 (14)  | C/B—C2B—C3B—C11B                           | 56.37 (14)   |
| C1A—C2A—C3A—C4A                 | 175.14 (10)  | C1B—C2B—C3B—C4B                            | -176.62 (12) |
| C/A—C2A—C3A—C4A                 | 57.39 (13)   | C/B—C2B—C3B—C4B                            | -59.73 (14)  |
| C11A—C3A—C4A—C5A                | 53.87 (15)   | C11B—C3B—C4B—C5B                           | -54.41 (15)  |
| C2A—C3A—C4A—C5A                 | -60.89 (14)  | C2B—C3B—C4B—C5B                            | 61.36 (15)   |
| C3A—C4A—C5A—C6A                 | 1.25 (16)    | C3B—C4B—C5B—C6B                            | -0.81 (16)   |
| C4A—C5A—C6A—C10A                | -55.20 (14)  | C4B—C5B—C6B—C10B                           | 55.33 (15)   |
| C4A—C5A—C6A—C7A                 | 62.00 (15)   | C4B—C5B—C6B—C7B                            | -61.89 (14)  |
| C1A—C2A—C7A—C6A                 | -117.75 (12) | C1B—C2B—C7B—C8B                            | -6.01 (13)   |
| C3A—C2A—C7A—C6A                 | 5.20 (14)    | C3B—C2B—C7B—C8B                            | -127.31 (11) |
| C1A—C2A—C7A—C8A                 | 6.34 (13)    | C1B—C2B—C7B—C6B                            | 118.66 (11)  |
| C3A—C2A—C7A—C8A                 | 129.29 (11)  | C3B—C2B—C7B—C6B                            | -2.65 (15)   |
| C10A—C6A—C7A—C2A                | 51.26 (14)   | C10B—C6B—C7B—C8B                           | 65.93 (15)   |
| C5A—C6A—C7A—C2A                 | -65.30 (14)  | C5B—C6B—C7B—C8B                            | -177.76 (11) |
| C10A—C6A—C7A—C8A                | -66.97 (14)  | C10B—C6B—C7B—C2B                           | -52.80 (15)  |
| C5A—C6A—C7A—C8A                 | 176.47 (12)  | C5B—C6B—C7B—C2B                            | 63.52 (14)   |
| C1A—N1A—C8A—O2A                 | 121.68 (11)  | C1B—N1B—C8B—O2B                            | -122.62 (12) |

| C9A—N1A—C8A—O2A   | -61.90 (15)  | C9B—N1B—C8B—O2B   | 60.66 (14)   |
|-------------------|--------------|-------------------|--------------|
| C1A—N1A—C8A—C7A   | 0.15 (14)    | C1B—N1B—C8B—C7B   | -1.86 (14)   |
| C9A—N1A—C8A—C7A   | 176.57 (11)  | C9B—N1B—C8B—C7B   | -178.57 (10) |
| C2A—C7A—C8A—O2A   | -122.74 (11) | C2B—C7B—C8B—O2B   | 124.52 (11)  |
| C6A—C7A—C8A—O2A   | -3.56 (16)   | C6B—C7B—C8B—O2B   | 4.39 (16)    |
| C2A—C7A—C8A—N1A   | -4.16 (13)   | C2B—C7B—C8B—N1B   | 4.85 (13)    |
| C6A—C7A—C8A—N1A   | 115.02 (12)  | C6B—C7B—C8B—N1B   | -115.29 (12) |
| C5A—C6A—C10A—C11A | 57.17 (15)   | C7B-C6B-C10B-C11B | 58.18 (15)   |
| C7A—C6A—C10A—C11A | -58.26 (15)  | C5B-C6B-C10B-C11B | -57.51 (16)  |
| C6A—C10A—C11A—C3A | 0.68 (17)    | C6B-C10B-C11B-C3B | -0.69 (17)   |
| C2A—C3A—C11A—C10A | 57.79 (15)   | C4B-C3B-C11B-C10B | 58.48 (15)   |
| C4A—C3A—C11A—C10A | -57.75 (15)  | C2B-C3B-C11B-C10B | -57.10 (15)  |
|                   |              |                   |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-------------------------------------|-------------|--------------|--------------|------------|
| O2A—H2AA···O1B <sup>i</sup>         | 0.83        | 1.90         | 2.7322 (16)  | 178        |
| O2B—H2BA···O1A                      | 0.83        | 1.86         | 2.6868 (16)  | 179        |
| Symmetry codes: (i) $x, y-1, z-1$ . |             |              |              |            |

Fig. 1





